
Thus, in calculations of the heating of solid bodies in a plasma Jet one must allow for 
the nonsteadiness of heat exchange in the stage of a transient process, the duration of which 
depends not only on the parameters of the body but also on the properties of the plasma jet. 

NOTATION 

R, radius of thermocouple junction, m; a, thermal diffusivity, ma/sec; ~th, thickness 
of thermal boundary layer, m; %, thermal conductivity of gas, J/m.sec*deg; ~, heat-transfer 
coefficient, W/ma,deg. 
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AN ANALYTICAL INVESTIGATION OF THE LONGITUDINAL TEMPERATURE PROFILE 

DEVELOPING DURING THE COOLING OF A CRYOGENIC PIPELINE 

L. G. Azarova, N. T. Bendik, UDC 621.315.21:537.312.62:536.24 
E. L. Blinkov, and N. I. Glukhov 

Analytical expressions are obtained for the longitudinal temperature profiles of 
the wall and the stream of cryogen during the cooling of a cryogenic pipeline. 
A comparison of the calculated data with experiment gives their good agreement. 

To determine the nonsteady temperature fields developing during the cooling of a pipe- 
line one used [I] a one-dimensional description of heat transfer, it being assumed that the 
flow velocity of the cryogen in a given cross section is constant while the temperature only 
varies along the length of the pipeline. 

If one neglects heat conduction of the cryogen toward the wall of the pipeline in the 
longitudinal direction and considers the case when the ratio of the heat capacities of the 
cryogen and the wall of the pipeline per unit length is small, the cooling will be described 
by the system of equations [2] 

(cG)g c3Tg _ czH (T~ - -  Tg); 
-~x 

OTw - -  czH (Tg--  Tw) [ (Fep)~ at 
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or, in dimensionless form, 
OTw _ A ( T . - -  Tw); 
0q o 

OTg _ _  B (T~ - -  Tg), 
o~ 

(1) 

where Cr O~[Tg0/7 
~ l - - - - ~  t; ~ - - x ,  

(9cF)w (cgG)o 

A - -  a c~oo ; B - -  r Go . 

(gtTgo )~gO 

(2) 

(3) 

(4) 

It should be noted that Eq. (4) is valid in the case of steady heat exchange in the 
laminar mode of flow. Since the cooling of a cryogenic pipeline is a nonsteady process, 
nonsteadiness parameters [I] must be introduced into (4). As shown by estimates made for the 
cooling modes considered in the present work, however, allowance for these parameters does 
not lead to a pronounced change in ~. 

A finite-difference algorithm for the numerical solution of the system (i), developed 
and realized on a computer, is described in [2], and a calculation is also made of the non- 
steady temperature fields and cooling time of a coaxial cable with allowance for the vari- 
ability of the operating and physical parameters. 

From an analysis of [2-4] it follows that in a sufficiently long pipeline being cooled 
one can distinguish a completely cooled and a completely uncooled section, between which 
there is a zone of heat exchange between the cryogen and the wall of the pipeline where the 
temperature varies from Tgo to Two. Strictly speaking, the wall temperature never reaches 
the value Tgo but will only approach infinitely close to it. But one can assign a tempera- 
ture interval from (Two -- e) to (Tgo + e), where e is any temperature change as small as 
desired, outside of which the cooling process is approximately considered as fully completed. 
This temperature interval bounds the zone of heat exchange, which will have a fully defined 
width for a concrete value of ~. In the initial stages of cooling the zone of heat exchange 
forms and starts to move along the pipeline with a certain velocity. The cooling of the pipe- 
line is completed at that moment when the zone of heat exchange passes entirely through the 
pipeline. 

In [5] the hypothesis is advanced that after a certain time following the start of 
cooling with a constant flow rate of cryogen a temperature profile forms in the zone of heat 
exchange which does not change its shape with time and moves with a constant velocity v1: 

vi = d~/d~ = const. (5) 

When the  c o n d i t i o n  (5) i s  s a t i s f i e d  the  sys t em of  e q u a t i o n s  (1) can  be  i n t e g r a t e d ,  and one 
can obtain an analytical expression for the steady temperature profile. 

With allowance for (5) we introduce a new coordinate system moving with the velocity v,, 
the origin of which is placed at the point 

1 (T~o - -  Tgo) T~= T 

on the temperature profile of the wall. 

The connection between the old and new coordinate systems is expressed by the equation 

% = ~ -  vlN -+- C, (6) 

where C is some constant which does not appear in the s u b s e q u e n t  calculations. 

In the new coordinate system the temperature is a function not of the two variables 
and N, as in the old system, but of the one variable X, which in turn depends on ~ and n in 
accordance with Eq. (6). In accordance with this we obtain 
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OT OT 0% 
o~ oz o~ 

In this ease the system of equations 

dT OT OT 3~ 
d% O~ 0% O~ v~ 

(i) is converted to the form. 

dT 

dz 

where 

�9 d %  _ A (%- -  Og); vi dx 

dOg _ B (% --  Og), 
dx 

O~ - -  T w - -  Tgo ; Og -- Tg - -  Tgo 
T,~o - -  Tgo T~o --  Tgo 

(7) 

The system of equations (7) determines the temperature profiles of the wall 0 w = f~(x) 
and the cryogen 0g = fa(x) in the steady zone of heat exchange, which can be calculated know- 
ing the dependences of the heat capacity of the wall and the heat-transfer coefficient on the 
temperature and of the flow rate of cryogen on time. With a quadratic dependence of the heat 
capacity of the wall on the temperature, a linear dependence of the heat-transfer coefficient 
on 0w, and a constant flow rate of cryogen it is easy to obtain an analytical expression 
determining the temperature profile. And this will be done below. 

From the system of equations (7) with allowance for (3) at a constant flow rate of cryo- 
gen, it follows that 

dO~ cw dO~ 
~ - v ~  - -  (8) 

d% Cwo dx 

From this, assuming that Og 
we can find the velocity 

= 0 w at the start and end of the steady zone of heat exchange, 

I 

UI = CwO/ .f cwdOw : CwO/L' 
0 

where c w is the integral-mean value of the heat capacity of the wall in the temperature inter- 
val of e w from zero to one. 

The quadratic dependence of the heat capacity of the wall and the linear dependence of 
the heat-transfer coefficient on the temperature can be written in the following general form: 

g 

c~  --~ cw/c~lreo = 1 + a% + bO~, ; O~ r ~ CZ/~XITg 0 = 1 -{- m O  w.  (9) 

A f t e r  s u b s t i t u t i n g  Eqs. (3) ,  (8) ,  and (9) i n t o  the  system of equa t ions  (7) wi th  a con-  
s t a n t  f low r a t e  we o b t a i n  an i n t e g r a l  e x p r e s s i o n  connec t ing  the  d imens ion le s s  c o o r d i n a t e  • 
with the dimensionless wall temperature 0w: 

i ~ (1 + a 0  w+bO~)dO w 

o,'5 0 w (1 + mow) 0~ + ~-  0 w + (1 - -  Cw/CWlTgo) 

After integration we obtain the following dependence between X and 0w: 

x = D l n  0,5 2 In 0,5 1 { [ 2 D ( m + l ) l l n i  % k + ( k + l )  1 
1 - - %  a ( k + l )  Ow + m ( k + l ) - - k  k 3 + a ( k _ l _ l )  1,Sk+ 1 + 

where 

+[3k+ 2m ] o5m+11) 
- - a  - - m ( 2 k + l )  D In I 0 w m + l  ' (10) 

(2-t- 3k + 4 )  lm(k + l)--k]  

D =  (2k + l) [m + mZ (k + l) - -  k] " k :  2_b_b ' 3a" 
(ll) 
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(8) with allowance for (9) we can obtain the connection between the By integrating Eq. 
dimensionless stream temperature and the dimensionless wall temperature: 

a 2 b 3 o +To + voo 
Og = (12) 

a b 1 +--~ + -~ 

In the derivation given above the flow rate of cryogen was taken as constant. However, 
the flow rate varies along the length of the channel even in the case when it is kept con- 
stant at the channel entrance. We can show that this variation is small in the cooling of 
a copper cryogenic pipeline by helium. 

We will take the flow rate of cryogen at the entrance to the pipeline as constant, the 
cryogen as an ideal gas, and the pressure as constant along the length of the channel. Then 
from the Mendeleev-Clapeyron equation it follows that 

P const 

Pg RTg Tg 
where P is the cryogen pressure in the channel; R is the gas constant for the cryogen. 

It is natural that in the zone of heat exchange, along with the steady temperature pro- 
file there also forms a steady density profile, which moves with the same constant velocity 

Using (2) we write the continuity equation: 

GocgoFg dpg 

(pcoF)w Orl 
OG -- O. (13) a~ 

Vl. 

(14) 

In considering the motion of the density profile, we find the connection between the 
derivatives 30g/~ and 3pg/~: 

8pg18~ = -- (1 I%) (Opg/O~q). 

We transform Eq. (13), and with allowance for (14) we have 

o aG Goc~oFg , Opg + -~ O. 

Integrating this expression over the coordinate ~, we will have 

from which 

G - -  Go ~ G~176 vi (pg - -  pgo), 
(PcoF)w 

G --1+ cg~176 pg 1). (15) 
Or ~ Go (pcoF)w Pgo 

Equation (15) shows that in the zone of heat exchange G r decreases from one to 

(CoPoF)g ( Tg~ __1). 
(Gr)min = i + ($pF)w Two 

For the experimental installation considered in the present report with cooling from 
300 to 20=K and a pressure of 0.4 MN/m 2 we have (Gr)mi n = 0.966. The values of Cw are taken 
from [6] and those of Cg and pg from [7]. 

Thus, in the example under consideration the helium flow rate in the zone of heat ex- 
change decreases by 3.5%. We note that before and after the zone of heat exchange the flow 
rates of cryogen are constant but they differ by 3.5%. 

The temperature profiles in the steady zone of heat exchange were calculated using 
Eqs. (10)-(12) for a copper pipeline cooled by helium. The temperature dependences of the 
heat capacity of copper and of the heat-transfer coefficient are presented in Figs. 1 and 2. 
The dependence cw(T) is constructed from the data of [6] and u(T) from (4). The thermophysical 
properties of helium are taken from [7] for a pressure of 4 abs. arm. 
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Fig. i. Variation of the heat capacity of copper c w (J/kg'~ 
with temperature T (~ (solid llne) and quadratic approxima- 
tions of this dependence (dashed lines): i) for the tempera- 
ture range of 20-300~ 2) 100-300~ 

Fig. 2. Variation of the heat-transfer coefficient a (W/m~,~ 
with temperature T (~ (solid line) and the linear approxima- 
tion of this dependence (dashed line). 

The dashed lines in Fig. 1 show the quadratic approximations of the dependence Cw(T) for 
the temperature range of 20-300~ with the coefficients a = 105 and b = --57 and for the tem- 
perature range of 100-300~ with the coefficients a = l.ll and b = -0.58, while the dashed 
line in Fig. 2 shows the linear approximation of the dependence ~(T). For the temperature 
range of 20-300~ the coefficient m equals 3.5, while for 100-300=K, m = 1.3. 

These approximations were used in the calculations. Their maximum departure from the 
true c w and ~ is 10%. 

The temperature profiles for different ~r(0w) are shown in Fig. 3. It is seen from the 
figure that the zone of heat exchange is narrower if the heat-transfer coefficient is not 
constant but decreases with a decrease in temperature. 

Temperature profiles for different Cwr(8 w) are shown in Fig. 4. For cooling in the range 
of 100-300~ where the heat capacity of the wall varies less with temperature, the zone of 
heat exchange is found to be wider. 

For a constant value of the heat capacity of the wall the ~one of heat exchange does 
not assume a steady value regardless of the form of the temperature dependence ~r(Sw). 

We can show this by using Eqs. (i0) and (ii). 

For a linear temperature dependence of the heat capacity of the wall the coefficient b 
equals zero, and hence k = 2b/3a = 0. Then 

1 [ 2 ( a ~ l )  in 0.5 0.5 2(m--a) ] 0.5m+l ] 
X . . . . .  21n + -ln . 

a l + m  1 - - 0  w Ow l §  Owm+ 1 

The heat capacity of the wall will be constant when a = b = 0, but then the value of X 
becomes equal to ~for any m and 0w, and hence a steady zone of heat exchange is not formed. 

The experimental verification of Eqs. (10)-(12) was performed on the ISPK-M installa- 
tion, which consists of a section of coaxial superconducting cable where the cryogen (helium) 
flows through the gap between the two cores, which consist of copper tubes with the super- 
conductor deposited on their surfaces. The wall temperature was determined from the elec- 
trical resistance of individual sections of cable, measured with potential probes mounted on 
the outer surface of the inner tube [8]. The length of the sections was ~i m. The total 
length of the pipeline was 5.6 m. Tube diameters: inner 55 • 2.5 mm, outer 80 • 3.0 mm. 

The cooling was done from room temperature (300~ to 100~ at a helium flow rate of 
8.10 -~ kg/sec and to 20~ at a flow rate of 1.75.10 -s kg/sec. The helium flow rate at the 
entrance to the cable was kept constant. The gas pressure was 4 abs. arm. and varied 
insignificantly along the length of the pipeline because of the low hydraulic resistance. 

It is convenient to compare the calculated and experimental results on the width A~ of 
the zone of heat exchange [5]. As the width of the zone of heat exchange we understand the 
time in which the wall temperature at some definite cross section of the pipeline varies 
from (I -- ~) to e. 
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Fig. 3. Temperature profiles of wall (solid lines) and cryogen 
(dashed lines) in the steady zone of heat exchange for dif- 
ferent values of the heat-transfer coefficient: I and i') for 
m = 0; 2 and 2') for m = 1.3. The heat capacity of the wall 
is given in the approximation 2 in Fig. I. 

Fig. 4. Temperature profiles of wall (solid lines) and cryogen 
(dashed lines) in the steady zone of heat exchange for dif- 
ferent laws of variation of the heat capacity of the wall for 
m = 0: i and I') for a law of variation of c w corresponding to 
the approximation i in Fig. i; 2 and 2') for a law of variation 
of c w corresponding to the approximation 2 in Fig. i. 

As a result of the experiment we obtained dependences Tw(t) , which were reduced to the 
dimensionless form 8w(n) using Eqs. (2) and (7). For this the quantity ~ITgo was determined 
from the equation for the laminar mode of flow 

~lrgo= 4.36 %go , 
d (16)  

while the value of e was taken as r = (Two -- Tgo)/10. 

For cooling to 100~ the value of An is 10.4, while An = 1.9 for cooling to 20~ The 
values of the width of the zone of heat exchange calculated from Eq. (i0) are &n = 12.0 and 
An = 1.7, respectively. 

Thus, the calculated and experimental results agree well with each other, Which indi- 
cates that the analytical expressions obtained are suitable for calculating the cooling 
process. 

NOTATION 

T, temperature, ~ 0, density, kg/m3; ~, heat-transfer coefficient between wall and 
stream, W/ma.~ ~, perimeter wetted by stream, m; c, heat capacity, J/kg.~ F, cross-sec- 
tional area, ma; G, flow rate of cryogen, kg/sec; t, time, sec; x, longitudinal coordinate, 
m; I, coefficient of thermal conductivity of cryogen, W/meeK; ~, coefficient of dynamic 
viscosity, ma/sec; Pr, Prandtl number; n, dimensionless time; ~, dimensionless longitudinal 
coordinate; X, dimensionless longitudinal coordinate in the moving coordinate system; &n, 
width of zone of heat exchange; 8, dimensionless temperature; P, pressure of cryogen, N/ma; 

R, gas constant, J/kg.~ e, dimensional~ty of temperature; v,, dimensionless velocity of 
movement of steady temperature profile; c w, integral-mean heat capacity of wall, J/kg.~ a, 
b, m, constant coefficients in the approximating equations. Indices: 0, initial value; w, 
wall; g, cryogen; r, relative value. 
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CALCULATION OF INITIAL STAGE OF HEATING A PLANAR BODY WITH 

VARIABLE PROPERTIES 

Yu. V. Vidin UDC 536.244 

A method is presented for calculation of upper and lower limits of the tempera- 
ture field of a planar body with temperature-dependent thermophysical properties. 

In the initial stage of heating, a planar body can be considered as semiinfinite. The 
differential transfer equation with consideration of temperature dependence of the thermal 
conductivity and specific heat can then be written in the form 

d [f~(O)d~@ ] dO =0 ,  (i) 
dq -t- 2q[2 (@) dn 

where n = /X=/aoT/2 is the Boltzmann variable, and fl (0) and f2(O) are positive functions 
which do not go to zero over the range of 0 from 0 to !. We supplement Eq. (i) by the 
boundary conditions 

O = O  ~r ~ = 0 ,  (2) 

O =  1 ~r ~--,,-co. (3) 

In the general case Eq. (i) is nonlinear, so achievement of an analytical solution is dif- 
ficult. 

To study the problem presented by Eqs. (1)-(3), we will use the approach proposed in 
[I, 2], which considered nonstationary thermal conductivity of bodies with nonlinear boundary 
conditions. Following [i, 2], we will find upper and lower limits for the unknown tempera- 
ture field @. This method is applicable in engineering practice when the "gap" between the 
limiting functions is relatively small and the equations involved are relatively simple. 

We will now demonstrate the application of this principle to Eqs. (1)-(3). 

Introducing the Kirchhoff substitution 
@ I 

U = .I ft (@) dO / S [' (@) d@, (4) 
0 0 

we transform Eqs. (1)-(3) to the form 

d2U @ 2~] [2(0) dU _ O, (5) 
d~] 2 [i (6)) d~] 

U = O  for ~1=0, (6) 

U :  1 for ~1--+oo. (7) 
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